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Abstract
We construct a family of generalized coherent states attached to Landau levels
of a charged particle moving in the two-dimensional Euclidean plane under
a perpendicular uniform magnetic field. We prove that the ranges of the
corresponding coherent state transforms coincide with spaces of bound states
of the particle. This provides us with a new characterization of two-dimensional
Euclidean Landau states.

PACS numbers: 02.20.−a, 03.65.Fd

1. Introduction

In recent decades considerable attention has been paid to the physics of two-dimensional
(2D) quantum systems of charged particles, and, in particular, the Hall quantum effect
[1]. The planar Landau problem [2] arises in the frame of quantum mechanics when a
charged particle evolves under the influence of an external constant uniform magnetic field
perpendicular to the Euclidean plane. This problem has been generalized to curved two-
dimensional surfaces with a normal stationary magnetic field, such as the hyperbolic half-
plane [3].

In a previous work [4], we were concerned with a family of generalized coherent states
obtained by means of a square integrable representation of the group of affine transformations
of the real line. This representation was realized on the Hilbert space of square integrable
functions on the real positive half-line. We have proved that the ranges of the corresponding
coherent state transforms coincide with spaces of bound states of the Landau Hamiltonian on
the hyperbolic half-plane.

In this paper, we deal with an analogous question in the context of the two-dimensional
Euclidean plane as configuration space and for the planar Landau Hamiltonian on it. Indeed,
we construct for each Landau level a set of generalized coherent states obtained by displacing
Gaussian–Hermite functions via operators of a unitary irreducible representation of the
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Heisenberg–Weyl group. This allows us to characterize two-dimensional Euclidean Landau
states as coherent state transforms of square integrable functions on the real line.

This paper is organized as follows. In section 2, we recall briefly some required facts on
the planar Landau problem. Section 3 deals with the Perelomov presentation of constructing
generalized coherent states via representations of the Heisenberg–Weyl group. In section 4,
this formalism is applied so as to obtain a set of generalized coherent states attached to Landau
levels. In section 5, we establish a characterization theorem for spaces of Euclidean Landau
states by means of the corresponding coherent state transforms. Section 6 is devoted to some
concluding remarks.

2. Spaces of 2D Euclidean Landau states

The Hamiltonian operator describing a particle of charge e and mass m∗ which lives on the
Euclidean xy-plane and interacting with a perpendicular constant homogeneous magnetic field
is given by

H = 1

2m∗

(
−ih̄∇ − e

c
A

)2
(2.1)

where h̄ denotes Planck’s constant, c is the light velocity and i = √−1 stands for imaginary
unit. We denote by B > 0 the strength of the magnetic field and we make use of the symmetric
gauge A = − 1

2 r × B = (−B
2 y, B

2 x
)
, r = (x, y) ∈ R

2. For the sake of simplicity, we employ
the units m∗ = e = c = h̄ = 1 in (2.1). Therefore, we consider the Landau Hamiltonian

HB := 1

2

[(
i

∂

∂x
− B

2
y

)2

+

(
i
∂

∂y
+

B

2
x

)2
]

(2.2)

acting in the Hilbert space L2(R2, dx dy). It is well known that the spectrum σ(HB) of the
operator HB in (2.2) consists of eigenvalues of infinite multiplicity (Landau levels) of the form

EB
n := (

n + 1
2

)
B n = 0, 1, 2, . . . . (2.3)

We let Pn denote the orthogonal projection operator onto the eigensubspace EB
n (R2) :=

Pn(L
2(R2)) of the operator HB , which corresponds to the eigenvalue EB

n . Note that spaces
EB

n (R2), n = 0, 1, 2, . . . , consist of bound states of the particle. The operators {Pn} are
connected with the resolvent operator of HB through the relation

(HB − E)−1 =
+∞∑
n=0

Pn

(n + 1/2)B − E
E ∈ C\σ(HB). (2.4)

The Green function (resolvent kernel) of HB is given by ([5], p 215)

GB(r, r′;E) = 1

2π
�

(
1

2
− E

B

)
exp

(
− iB

2
r ∧ r′ − B

4
‖r − r′‖2

)

×�

(
1

2
− E

B
, 1,

B‖r − r′‖2

2

)
(2.5)

where � is the Euler gamma function, r∧r′ := xy ′−x ′y and �is the confluent hypergeometric
function of the second kind. The latter decomposes into a series ([6], p 92) as

�(a, c, θ) = θ1−c

�(a − c + 1)

+∞∑
j=0

1

j + a − c + 1
L

(1−c)
j (θ) c >

1

2
θ > 0 (2.6)
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where L
(1−c)
j (·) is the generalized Laguerre polynomial [7]. Therefore, by (2.5) and (2.6) one

obtains from (2.4) the matrix representation of the projection operators Pn as

Pn(r, r′) = B

2π
exp

(
− iB

2
r ∧ r′ − B

4
‖r − r′‖2

)
L(0)

n

(
B

2
‖r − r′‖2

)
. (2.7)

The latter turns out to be the reproducing kernel of the Hilbert space EB
n (R2) of Euclidean

Landau states.

3. Generalized coherent states related to the Heisenberg–Weyl group

The concept of generalized coherent states related to the Heisenberg–Weyl group is used here
following the Perelomov presentation (see [8], pp 226–7, and [9], section 1.1).

The simplest operators used in describing a quantum mechnical system with one degree
of freedom are the coordinate operator q and the momentum operator p. Together with the
identity operator I, they satisfy the commutation relations: [p, q] = ih̄I, [p, I ] = [q, I ] = 0,
which characterize the well-known Heisenberg–Weyl Lie algebra. In this algebra, an element
X of the form

X = u(ip) + v(iq) + t (iI ) u, v, t ∈ R (h̄ = 1) (3.1)

can be rewritten in terms of the annihilation and creation operators

a = 1√
2
(q + ip) a+ = 1√

2
(q − ip)

as follows:

X = t (iI ) + αa+ − α∗a

where

α = 1√
2
(−u + iv) α∗ = 1√

2
(−u − iv). (3.2)

By exponentiation, we obtain that

exp(X) = exp(itX)D(α) D(α) = exp(αa+ − α∗a).

The law of multiplication for the operators D(α) has the form

D(α)D(β) = exp(i Im αβ∗)D(α + β). (3.3)

As a consequence of (3.3), the operators T (t, α) := exp(it)D(α) form a unitary irreducible
representation (UIR) of the Heisenberg–Weyl Lie group W1 whose underlying manifold is
{g = (t, α), t ∈ R, α ∈ C} = R × C.

Remark 3.1. If |φ0〉 is an arbitrary vector in the representation Hilbert space L2(R), one can
see that the state corresponding to |φ0〉 is stable only under the operators of the form T (t, 0).
This is equivalent to saying that the isotropy subgroup of the state |φ0〉 is {(t, 0), t ∈ R}.

Applying the UIR T (g) = T (t, α) to a vector |φ0〉 of L2(R), we obtain a set of states

|α〉 := D(α)|φ0〉 α ∈ C. (3.4)

In view of remark 3.1, different α correspond to different states. The set {|α〉} is a system of
generalized coherent states (GCS) of type {T (g), |φ0〉}, which satisfies, among other properties,
the following ([9], p 15):

〈ψ,ψ〉 =
∫

C

dµ(α)〈α|ψ〉〈ψ |α〉 ψ ∈ L2(R) (3.5)

dµ(α) being the ordinary Lebesgue measure on C = R
2.
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4. Generalized coherent states attached to Landau levels

For our purpose, we shall use the real variables (x, y):

x := − 1√
B

u y := − 1√
B

v.

(u, v) are the real variables introduced in (3.1) and connected to (α, α∗) by (3.2). In terms
of (x, y) the action of the operator D(α) = D(x, y) on functions ψ∈ L2(R, dξ) takes the
following form (see [9], p 13):

D(x, y)[ψ](ξ) = exp

(
i
B

2
xy

)
exp(−i

√
Byξ)ψ(ξ −

√
Bx) ξ ∈ R. (4.1)

Now, to construct for a given Landau level En, a set of generalized coherent states, we
choose as vector |φ0〉 the function �n of L2(R, dξ) defined by

�n(ξ) := (
√

π2nn!)−
1
2 exp

(− 1
2ξ 2

)
Hn(ξ) n = 0, 1, . . . (4.2)

where Hn(·) is the nth Hermite polynomial [7] and ξ ∈ R. Note that the selected functions
{�n} in (4.2) form a total orthonormal system in L2(R, dξ) (cf [10], pp 77–9). Moreover, for
λ > 0, the functions ξ →

√
2
λ
�n

(√
λ
2 ξ

)
are normalized eigenfunctions of the one-dimensional

harmonic oscillator d2

dξ 2 − λ2

4 ξ 2 with eigenvalues
(
n + 1

2

)
λ, n = 0, 1, 2, . . . .

According to (3.4), we can now define generalized coherent states (GCS) labelled by
elements (x, y)∈ R

2 and n = 0, 1, . . . , as

|(x, y), B, n〉 := D(x, y)[�n].

By (4.1) and (4.2), wavefunctions of these GCS have the form

〈ξ |(x, y), B, n〉 = (
√

π2nn!)−
1
2 exp

(
−i

√
Bξy + i

B

2
xy − 1

2
(ξ −

√
Bx)2

)
Hn(ξ −

√
Bx).

For these GCS, equation (3.5) reads∫
R

2
dµ(x, y)〈ψ |(x, y), B, n〉〈ψ |(x, y), B, n〉∗ = 〈ψ,ψ〉 ψ ∈ L2(R, dξ). (4.3)

5. Coherent state transform and characterization theorem

Here, we start by noting that equation (4.3) says that the coherent state transform
WB,n : L2(R, dξ) → L2(R2, dµ) defined by

WB,n[ψ](x, y) :=
∫

R

dξ ψ(ξ)〈ξ |(x, y), B, n〉∗

is an isometrical embedding. Explicitly,

WB,n[ψ](x, y) = cn

∫
R

dξψ(ξ) exp

(
i
√

Bξy − i
B

2
xy − 1

2
(ξ −

√
Bx)2

)
Hn(ξ −

√
Bx)

where

cn := (
√

π2nn!)−
1
2 .

Now, we shall make use of this constructed transform to establish a characterization theorem
for spaces of Euclidean Landau states. Precisely, we obtain the following.
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Theorem 5.1. For B > 0 and n = 0, 1, 2, . . . , we have that

WB,n[L2(R)] = EB
n (R2).

To show that WB,n[L2(R)] ⊂ EB
n (R2) we need to compute the action of the Landau

Hamiltonian HB on WB,n[ψ] for arbitrary function ψ ∈ L2(R). With the help of the identity
([7], p 1033)

d

du
Hn(u) = 2nHn−1(u)

satisfied by the Hermite polynomial, a straightforward calculation gives

1

2

[(
i

∂

∂x
− B

2
y

)2

+

(
i
∂

∂y
+

B

2
x

)2
]

WB,n[ψ](x, y)

= 1

2
B2x2WB,n[ψ] − 2xB

√
BWB,n[ξψ] + BWB,n[ξ 2ψ] − iB

2
y
√

BWB,n[ξψ]

+
iB2

2
xyWB,n[ψ] +

incn

cn−1
B

√
ByWB,n−1[ψ] +

iB
√

B

2
yWB,n[ξψ]

−BWB,n[ξ 2ψ] + B
√

BxWB,n[ξψ] +
2ncn

cn−1
BWB,n−1 + BWB,n[ψ]

− iB2

2
xyWB,n[ψ] + B

√
BxWB,n[ξψ] − B2x2WB,n[ψ]

− 2ncn

cn−1
B

√
BxWB,n−1[ψ] − incn

cn−1
B

√
ByWB,n−1[ψ] +

2ncn

cn−1
BWB,n−1[ξψ]

− 2ncn

cn−1
B

√
BxWB,n−1[ψ] − 4n(n − 1)cn

cn−2
BWB,n−2[ψ]

= nBcn

∫
R

dξψ(ξ) exp

(
i
√

Bξy − i
B

2
xy − 1

2
(ξ −

√
Bx)2

)
× 2(ξ −

√
Bx)Hn−1(ξ −

√
Bx)

− 2n(n − 1)Bcn

∫
R

dξψ(ξ) exp

(
i
√

Bξy − i
B

2
xy − 1

2
(ξ −

√
Bx)2

)

×Hn−2(ξ −
√

Bx) +
1

2
BWB,n[ψ].

By the recursion formula for the Hermite polynomial ([7], p 1033)

Hn(u) = 2uHn−1(u) − 2(n − 1)Hn−2(u)

we obtain that

HBWB,n[ψ] = nBWB,n[ψ] + 1
2BWB,n[ψ] = EB

n WB,n[ψ].

Conversely, let f ∈ EB
n (R2). We consider the function

ψf (ξ) := B

2π

∫
R

2
dµ(x ′, y ′)f (x ′, y ′)〈ξ |(x ′, y ′), B, n〉 ξ ∈ R.

We shall calculate

WB,n[ψf ](x, y) =
∫

R

dξψf (ξ)〈ξ |(x, y), B, n〉∗

= B

2π

∫
R

dξ

∫
R

2
dµ(x ′, y ′)f (x ′, y ′)〈ξ |(x ′, y ′), B, n〉〈ξ |(x, y), B, n〉∗.
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Reversing the order of integration, we can write

WB,n[ψf ](x, y) = B

2π
c2
n

∫
R

2
dµ(x ′, y ′)f (x ′, y ′)

×
∫

R

dξ exp

(
−i

√
Bξy ′ + i

B

2
x ′y ′ − 1

2
(ξ −

√
Bx ′)2

)
Hn(ξ −

√
Bx ′)

× exp

(
i
√

Bξy − i
B

2
xy − 1

2
(ξ −

√
Bx)2

)
Hn(ξ −

√
Bx).

By using sucessive changes of variable ξ , we obtain

WB,n[ψf ](x, y) = B

2π
c2
n

∫
R

2
dµ(x ′, y ′)f (x ′, y ′) exp

(
− iB

2
(xy ′ − yx ′) − B

4
(x − x ′)2

)

×
∫

R

dξ exp(−ξ 2 + i
√

Bξ(y − y ′))Hn

(
ξ +

1

2

√
B(x − x ′)

)

× Hn

(
ξ − 1

2

√
B(x − x ′)

)

= B

2π
c2
n

∫
R

2
dµ(x ′, y ′)f (x ′, y ′)

× exp

(
− iB

2
(xy ′ − yx ′) − B

4
((x − x ′)2 + (y − y ′)2)

)

×
∫

R

dξ e−ξ 2
Hn

(
ξ +

1

2

√
B((x − x ′) + i(y − y ′))

)

× Hn

(
ξ − 1

2

√
B((x − x ′) − i(y − y ′))

)
.

Making use of the identity ([7], p 838)∫ +∞

−∞
e−u2

Hj(u + α)Hk(u + β) du = 2k
√

πj !βk−jL
(k−j)

j (−2αβ) j � k (5.1)

for j = k = n, we obtain

WB,n[ψf ](r) =
∫

R
2

dµ(r′)f (r′) exp

(
− iB

2
r ∧ r′ − B

4
‖r − r′‖2

)
B

2π
L(0)

n

(
B

2
‖r − r′‖2

)
.

But the function of variables (r, r′) in the integral above coincides with the reproducing kernel
Pn(r, r′) of the eigenspace EB

n (R2), given in (2.7). Therefore, the last equation gives that
WB,n[ψf ] = f . It satisfies 〈ψf ,ψf 〉L2(R) < +∞ since WB,n is an isometry. We have then
proved the inclusion EB

n (R2) ⊂ WB,n[L2(R)].
Before ending this section we should note the following:

(i) The form of the inverse coherent state transform from EB
n (R2) into L2(R) is given by

f → B

2π

∫
R

2
dµ(x ′, y ′)f (x ′, y ′)〈ξ |(x ′, y ′), B, n〉.

(ii) For m = 0, 1, . . . and (a, b) ∈ R
2, the image of the GCS |(a, b), B,m〉 under the

transform WB,n can be calculated by making use of identity (5.1). Indeed, we obtain that

WB,n[|(a, b), B,m〉](x, y) =
∫

R

dξ 〈ξ |(a, b), B, n〉〈ξ |(x, y), B, n〉∗

= cncm2max(n,m)
√

π min(n,m)
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× exp

(
iB

2
(ay − xb) − B

4
((x − x ′)2 + (y − y ′)2)

)

×
(

1

2

√
B((a − x)2 + i(b − y)2)

)max(n,m)−min(n,m)

×L
(max(n,m)−min(n,m))

min(n,m)

(
B

2
((a − x)2 + (b − y)2)

)
.

(iii) The action of the Heisenberg–Weyl group on the Landau states space is given by
means of the operators τ((x, y), t) : EB

n (R2) → EB
n (R2), ((x, y), t) ∈ W1, defined

by τ((x, y), t) := WB,no eiBtD(x, y)oW−1
B,n,D(x, y) are the operators given in (4.1). A

direct computation gives

τ((x, y), t)[f ](x ′, y ′) = exp iB
(
t + 1

2 (xy ′ − x ′y)
)
f (x ′ − x, y ′ − y)

for f ∈ EB
n (R2) and (x ′, y ′) ∈ R

2.

6. Concluding remarks

In our consideration of a charged particle moving in the two-dimensional Euclidean plane
under the influence of a perpendicular uniform magnetic field, we have constructed for each
Landau level a set of generalized coherent states by displacing Gaussian–Hermite functions
via operators of a unitary irreducible representation of the Heisenberg–Weyl group. We
have established that under the corresponding coherent state transforms, the images of the
representation Hilbert space coincide with spaces of bound states of the particle. By this
characterization, the coherent state method has provided us with a new way of looking at
eigenspaces of the Landau Hamiltonian. In particular, the constructed coherent state transforms
can be used to build two-dimensional Landau states from bound states of the one-dimensional
harmonic oscillator.
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